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Problem Description

I Problem formulation

minimize
x∈Rd

f̄(x) :=

n∑
i=1

fi(x)

subject to (i, j) ∈ G
(1)

where each fi known by agent i privately is proper, convex, closed
and G is a connected undirected graph.

I Each fi is L-smooth, i.e. ∇fi is L-Lipschitz continuous.

I W as mixing matrix encodes graph topology and communication
weights.
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Mixing Matrix

I W is symmetric and satisfies
• W1 = 1
• λ(W) ∈ (−1, 1] and Null(I−W) = span{1}

I W can be constructed by
• Laplacian matrix L of G
• Metropolis constant edge weight
• Symmetric fastest distributed linear averaging problem [5].
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Consensus Problem

I The consensus problem will be solved instead

minimize
x=[x1,··· ,xn]T∈Rn×d

f(x) :=

n∑
i

fi(xi)

subject to Wx = x

(2)

I The optimality implies

(W − I)x∗ = 0,

i.e., consensus x∗1 = · · · = x∗n.
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DGD

I Decentralized Gradient Descent (DGD) combines gossip algorithm
and gradient descent (GD)

xk+1 = Wxk − α∇f(xk), (3)

I Equivalent to use GD to solve

minimize
x∈Rn×d

f(x) +
1

α
(I−W)x (4)

I Fixed stepsize α ∈ (0, λmin(I + W)/L) only achieves inexact linear
convergence for strongly convex (SC) fis, while diminishing stepsize
can give exact convergence only at sublinear rate [6].
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EXTRA and NIDS

I EXTRA [4] uses one more step parameter in update.

xk+2 =
I + W

2

[
2xk+1 − xk

]
− α∇f(xk+1) + α∇f(xk), (5)

where α ∈ (0, λmin(I + W)µ/L2) under SC assumption on f̄ .

I Exact linear convergence is comparable to centralized algorithm.

I The upper bound on α is proportional to µ
L , much smaller than

centralized one .
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EXTRA and NIDS

I NIDS [2] communicates gradient information, compared to EXTRA.

xk+2 =
I + W

2

[
2xk+1 − xk − α∇f(xk+1) + α∇f(xk)

]
, (6)

where α ∈ (0, 2/L) under SC assumption on each fis.

I The upper bound of α coincides with the centralized one and is
independent of the mixing matrix.

I The assumption on fis is stronger than strong convex assumption on
f̄ .

Yao Li Decentralized Algorithm&Compressed SGD 8 / 23



Decentralized Algorithm
Communication Compressed SGD

Further Topics
References

Improvement

The improvement of EXTRA and NIDS in [1] also includes the mixing
matrix, i.e., the relaxed mixing matrix can be use to accelerate algorithms.

EXTRA [4] EXTRA [1] NIDS [2] NIDS [1]

λ(W) (−1, 1] (−5/3, 1] (−1, 1] (−5/3, 1]

fis SC on f̄ SC on f̄ SC on fis SC on f̄

αmax
(1+λmin(W))µ

L2
5+3λmin(W)

4L
2
L

2
L

The gap between decentralized and centralized algorithm is closed in the
aspect of linear convergence and largest stepsize.
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Experiment

Linear regression with strongly convex f̄ .
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Figure 1: LHS: the error
‖xk−x∗‖F
‖x0−x∗‖F

vs iterations for DGD with different stepsizes, EXTRA with three stepsizes, and NIDS. RHS: The random

network with 10 nodes.
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Distributed Scheme

I The following distributed scheme is considered for problem

minimize
x∈Rd

f(x) +R(x) :=
1

n

n∑
i=1

fi(x) +R(x), (7)

where f is smooth and R is a nonsmooth regularizer.

I Each fi is L-smooth and strongly convex in convex setting.

I R = 0 and fi is L-smooth in nonconvex setting.
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Distributed Scheme

I Distributed Stochastic Gradient Descent (DSGD)
• Master: receive gis, get ḡ = 1

n

∑n
i=1 gi, update model parameter

x = proxγR(x− γḡ) and broadcast x.
• Worker i: receive x, sample gi based on local data such that

E[gi|x] = ∇fi(x) and send gradient parameter gi.

I When bandwidth is limited, the communication dominates the
convergence.

I Compressed(Quantized) low-bit parameter will be used instead.
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Communication Reduction

There are mainly two kinds of methods to compress parameter:
I Deterministic Method:

• Top-k Sparsification, e.g. [1, 100, 1, 1, 1]→ [0, 100, 0, 0, 0]
• Clipping, e.g, 1.23456→ 1.2
• 1-Bit Quantization, i.e., compress x into ‖x‖sign(x)

I Stochastic Method:
• Randomized Quantization
• P-norm Quantization
• Randomized Sparsification

All stochastic method will generate unbiased estimator parameter, i.e.,
E[Q(x)] = x.
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DORE: DOuble REsidual compression SGD

DORE is proposed in [3] using stochastic method to compress the residual
of parameters on both master and worker nodes.
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DORE: DOuble REsidual compression SGD
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Figure 2: An illustration of DORE
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Convergence Result

The following assumptions are made throughout the paper:

I Bounded variance of estimator on gradient, i.e.,
E[‖gi −∇fi(x)‖2] ≤ σ2i .

I Bounded signal-to-noise factor, i.e., E[‖Q(x)− x‖2] ≤ C‖x‖2.
In convex setting, DORE converges to the neighborhood of optimal point
linearly.
In nonconvex setting, the similar rate to the vanilla DSGD is achieved

1
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Experiments
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Figure 3: Per iteration time cost on Resnet18 for SGD, QSGD, and DORE. It is tested in a shared cluster environment connected by Gigabit Ethernet

interface. DORE speeds up the training process significantly by mitigating the communication bottleneck.
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Figure 4: Resnet18 trained on CIFAR10. DORE achieves similar convergence and accuracy as most baselines. DoubeSuqeeze converges slower and suffers

from the higher loss but it works well with topk compression.
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Figure 5: LHS: Linear regression on synthetic data (error vs communication cost); RHS: ResNet18 on CIFAR10 under 200 Mbps bandwidth
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Further Topics

I Quantization algorithm for decentralized optimization

I Stochastic Modified Equation (SME) to study the dynamics of SGD
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